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Review

Every day throughout the world, physicians, 
nurses, and an array of other health profes-
sionals use a stethoscope, which was invented 
by René Laennec in 1816 (Weinberg 1993). It 
is a relatively simple instrument whose sounds 
can indicate a myriad of disease states that 
can then be confirmed by more sophisticated 
assessments. It is hard to visualize a physician 
or imagine medicine without the stethoscope. 
Similarly, the Salmonella mutagenicity assay, 
which was developed initially as a spot test 
(Ames 1971), then as a plate-incorporation  
test (Ames et al. 1972) using strains of 
Salmonella bacteria derived from studies by 
B.N. Ames and P.E. Hartman (Hartman et al. 
1986) and rodent liver microsomal activation 
coupled initially to the assay by H.V. Malling 
(Malling 1971), is a deceptively simple tool 
that can be used to detect the mutagenicity 
of environmental chemicals, environmen-
tal mixtures, body fluids, foods, drugs, and 
physical agents. More complex tests can be 
applied to confirm and characterize further 
the mutagenic activity of the agent. Although 
neither the stethoscope nor the Salmonella 
assay provides a definitive diagnosis/detection 
of a disease or a mutagen, respectively, both 
are indispensible first-line tools in their fields.

There is much unrest in the field of toxi-
cology today because of a variety of scientific 
developments, including advances in genomic 

science (Parsons et al. 2008; Wood et al. 
2007), improved knowledge of the molecular 
and mechanistic basis for biological responses 
to toxicant exposure (Guyton et al. 2009), 
legislation mandating reduced numbers of 
animals for toxicology testing (Pfuhler et al. 
2009), and governmental direction to incor-
porate all of the above into a new paradigm 
for toxicology for the 21st century (National 
Research Council 2007).

A strict parallel cannot be drawn between 
a targeted testing assay such as the Salmonella 
assay, which is used for hazard identifica-
tion, and a high-throughput screening (HTS) 
assay such as either the ToxCast program 
[U.S. Environmental Protection Agency 
(EPA)] or the combined U.S. EPA/National 
Institutes of Health (NIH)/National Institute 
of Environmental Health Sciences (NIEHS)/
National Toxicology Program (NTP) Tox21 
program (Kavlock et al. 2009), which can 
identify specific signaling or biochemical path-
ways relevant to potential disease develop-
ment and thus have the possibility of going 
beyond hazard identification. An assay like the 
Salmonella assay is a stand-alone screen that 
requires high accuracy and reproducibility and 
is correlated with health end points, permit-
ting its use for regulatory purposes. In con-
trast, HTS assays use emerging technologies 
and target probes, knowledge of biochemical 

and disease pathways in rodents and humans, 
genomics, and other technologies to generate 
a profile or pattern of effects across a range of 
chemical classes and biological end points that 
do not depend greatly on any particular chemi-
cal or assay result. As with the Salmonella assay, 
HTS assays are viewed as a first-line screening 
tool, with results of interest being followed up 
by more extensive confirmatory assays.

In the process of developing and adopt-
ing new methods, it is important to build 
on and learn from past paradigm shifts, sev-
eral of which occurred in the field of genetic 
toxicology with the introduction of the 
Salmonella assay. Consequently, the history 
of the Salmonella assay highlights some of the 
necessary steps and considerations needed for 
the development of almost any type of toxi-
cology assay, including some aspects of HTS 
assays. Our purpose with this review is to 
a) describe the paradigm shifts precipitated by 
the Salmonella assay, including the demonstra-
tion of a connection between mutagenicity 
and carcinogenicity and the ubiquitous nature 
of mutagens in our environment; b) document 
the historic and current applications of the 
Salmonella assay; and c) illustrate the lessons 
learned from the development, validation, test-
ing, assessment, and uses of this in vitro assay 
that may be applicable to the develop ment of 
in vitro toxicology assays for the 21st century.
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oBjectives: According to the 2007 National Research Council report Toxicology for the Twenty-First 
Century, modern methods (e.g., “omics,” in vitro assays, high-throughput testing, computational 
methods) will lead to the emergence of a new approach to toxicology. The Salmonella mammalian 
microsome mutagenicity assay has been central to the field of genetic toxicology since the 1970s. 
Here we document the paradigm shifts engendered by the assay, the validation and applications of 
the assay, and how the assay is a model for future in vitro toxicology assays.

data sources: We searched PubMed, Scopus, and Web of Knowledge using key words relevant to 
the Salmonella assay and additional genotoxicity assays.

data extraction: We merged the citations, removing duplicates, and categorized the papers by 
year and topic.

data synthesis: The Salmonella assay led to two paradigm shifts: that some carcinogens were 
mutagens and that some environmental samples (e.g., air, water, soil, food, combustion emissions) 
were mutagenic. Although there are > 10,000 publications on the Salmonella assay, covering tens of 
thousands of agents, data on even more agents probably exist in unpublished form, largely as pro-
prietary studies by industry. The Salmonella assay is a model for the development of 21st century 
in vitro toxicology assays in terms of the establishment of standard procedures, ability to test various 
agents, transferability across laboratories, validation and testing, and structure–activity analysis.

conclusions: Similar to a stethoscope as a first-line, inexpensive tool in medicine, the Salmonella 
assay can serve a similar, indispensable role in the foreseeable future of 21st century toxicology.
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Paradigm Shift I: Relating 
Mutagenic Activity to 
Carcinogenic Activity

By the middle of the 20th century, there 
was almost no evidence to support a role 
for mutation in cancer, and few carcinogens 
were known to be mutagens (Burdette 1955). 
However, at this time efforts began to screen 
carcinogens and other chemicals for muta-
genicity in vitro, starting with the use of a 
base-substitution strain of Escherichia coli by 
Demerec et al. (1951) and then by Szybalski 
(1958), who assessed > 400 compounds 
using filter-paper disks in a spot test with the 
same strain. This concept was expanded by 
the development of a set of tester strains that 
detected different types of gene mutations in 
Salmonella typhimurium (Whitfield et al. 1966) 
and in the fungus Neurospora crassa (Malling 
1966a). Many in vitro mutagenicity assays were 
developed throughout this period, including 
the ad‑3 forward-mutation assay in N. crassa 
(de Serres and Kølmark 1958); cytogenetic 
assays (Kihlman 1966); Hprt (hypo xanthine-
guanine phosphoribosyltransferase) assays 
in V79 (Chu and Malling 1968) and CHO 
cells (Hsie et al. 1975); the Tk+/– (thymidine 
kinase) assay in mouse lymphoma cells (Clive 
et al. 1972); and assays in yeast (Zimmermann 
1971). The develop ment of these and subse-
quent assays in mammalian cells and in vivo 
was predicated on the notion that mutagenicity 
results in these systems would be more relevant 
to humans than would those from bacteria.

Despite concerted efforts, few mutagens 
beyond direct-acting alkylating agents were 
discovered initially with these assays, and 
known rodent carcinogens other than direct-
acting alkylating agents were largely negative in 
these assays. However, as reviewed by Brusick 
(1989), a paradigm shift began when Malling 
(1966b) used a hydroxylating mixture to acti-
vate diethyl- and dimethyl nitrosamine, which 
were not mutagenic in vitro, to metabolites 
that were mutagenic in N. crassa. Building 
on this observation, as well as on the work of 
Miller and Miller (1971) and in consultation 
with H. Gelboin at NIH/NCI, Malling (1971) 
then coupled the Salmonella mutagenicity assay 
with in vitro metabolic activation composed 
of the supernatant from mouse liver homoge-
nate centrifuged at 30,000 × g (microsomes) 
plus cofactors. Using this microsomal acti-
vation mixture, Malling (1971) showed 
that dimethyl nitrosamine was mutagenic in 
Salmonella in a liquid-suspension assay, result-
ing in the first version of what would later be 
called the Salmonella/mammalian microsome 
mutagenicity assay. The host-mediated assay 
provided additional evidence that carcinogens 
could be mutagens after mammalian metabo-
lism (Legator and Malling 1971). Ames 
et al. (1972) then showed that DNA-reactive 

metabolites of known carcinogens were muta-
genic (no metabo lic activation was used); in 
that paper, the authors also introduced the 
plate-incorporation version of the assay, where 
the bacteria and chemical were combined in 
the top agar on the Petri plate.

The connection between mutagenesis and 
carcinogenesis developed further when Ames 
et al. (1973a) combined their Salmonella tester 
strains, the test chemical, and the supernatant 
from a 9,000 × g centrifugation of rat liver 
homogenate (S9 fraction) along with cofactors, 
as described by Garner et al. (1972), together 
in the top agar and showed that a variety of 
heretofore non mutagenic rodent carcinogens 
were, in fact, mutagenic after metabolic activa-
tion. This plate-incorporation version of the 
Salmonella/mammalian microsome mutagen-
icity assay became a standard that is still in 
use today. Various modifications, including 
reduced nucleotide-excision repair, enhanced 
cell-wall permeability (Ames et al. 1973b), 
and enhanced error-prone repair achieved by 
the introduction of a plasmid [as suggested 
by MacPhee (1989)], combined to make for 
a highly sensitive test system (Maron and 
Ames 1983). Consequently, a new paradigm 
emerged within just a few years that led to an 
entirely new approach to carcino gen prediction 
and testing. This spurred the use of in vitro 
assays for mutagenicity in bacteria and mam-
malian cells as predictors of potential rodent 
and human carcinogens (Tennant et al. 1987), 
culminating in the current genetic toxicity test 
battery (Eastmond et al. 2009).

Decades of research have shown that muta-
genesis is a critical component of carcino genesis, 
based on a range of evidence including muta-
tion spectra (Dogliotti et al. 1998; Hainaut 
and Wiman 2009) and genomic sequencing of 
tumors (Wood et al. 2007; Parsons et al. 2008). 
Thus, now it is difficult to recall that once it was 
somewhat bold to propose that there was any 
direct connection between the two processes 
(Knudson 1973; Miller and Miller 1971). Prior 
to 1972, it was not yet clear that the electro-
philicity of some chemical carcinogens had a 
necessary role in the potential mutagenic activ-
ity of such compounds or even that DNA, as 
opposed to protein, was the ultimate target of 
carcinogens (Miller 1970).

Although sound theoretical reasons existed 
for proposing that carcinogens might act 
through a mutagenic mechanism, a compelling 
demonstration of this connection did not yet 
exist (Miller and Miller 1971). In fact, muta-
genesis shared the stage with other likely mech-
anisms, including epigenetic changes (Miller 
1970; Miller and Miller 1971), altered expres-
sion of an integrated viral genome (Tordaro and 
Huebner 1972), or alteration of immunological 
factors by carcinogens, permitting the forma-
tion and growth of tumors (Baldwin 1973). 
Of course, time has shown that all of the above 

mechanisms are important, especially epigenetic 
mechanisms (Jones and Baylin 2007), which 
may be particularly relevant for non mutagenic 
carcinogens. Given the much broader range of 
biology that future assays will detect, new para-
digm shifts will emerge in other areas of toxicol-
ogy from 21st century assays.

Paradigm Shift II: Recognition 
of Ubiquitous Mutagenic 
Activity in the Environment
When Ames (1971) first introduced the assay, 
he stated “I will be glad to mail the strains 
to people desiring them and to serve as a 
clearinghouse for new and improved bacte-
rial tester strains.” Consequently, by the late 
1970s, > 2,000 laboratories around the world 
had requested the Salmonella tester strains to 
initiate studies in environmental mutagen-
esis (Ames 1979). The fact that neither Ames 
nor his employer (University of California-
Berkeley) patented the strains and that he 
made them freely available facilitated their 
use and dissemination throughout academic, 
industrial, and government laboratories 
worldwide—promoting the development of 
many creative uses and modifications of the 
assay. Creative uses may also emerge from 
21st century assays, especially those developed 
in the public sector, which would have some 
probability of being disseminated freely.

The initial uses of the Salmonella assay led 
to the startling (at the time) recognition that 
our environment is replete with mutagens, 
including fungal toxins, combustion emissions, 
industrial chemicals, and drugs. The Salmonella 
assay was essential to this effort, providing the 
means by which researchers discovered for the 
first time that much of our environment had 
mutagenic activity, including cigarette smoke 
(Kier et al. 1974), urban air (Talcott and 
Wei 1977; Tokiwa et al. 1977), river water 
(Pelon et al. 1977), drinking water (Loper et al. 
1978), food (Sugimura et al. 1977), and soil 
(Göggelmann and Spitzauer 1983). The assay 
was used to show that even people could have 
systemic mutagenic activity detectable in urine 
after smoking (Yamasaki and Ames 1977) or 
after eating fried meat (Baker et al. 1982). 
Decades of studies have shown that nearly all 
urban air samples tested (Claxton et al. 2004; 
Claxton and Woodall 2007), drinking water 
(Richardson et al. 2007), soil (White and 
Claxton 2004), and house dust (Maertens et al. 
2004) are mutagenic. These reviews document 
that at least 40–50% of the papers published 
thus far on the genotoxicity of, for example, 
air, soil, water, and house dust have used the 
Salmonella assay, and they show that the vast 
majority of contemporary studies rely almost 
exclusively on the Salmonella assay for muta-
genicity assessments of environmental media.

The realization that much of the environ-
ment had mutagenic activity was unanticipated 
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by most researchers and posed a challenge 
to environmental scientists, public health 
authorities, and regulators. As 21st century 
toxicology proceeds, previously unrecog nized, 
ubiquitous toxicities in our environment may 
be discovered—beyond findings of mutagen-
icity and potential carcinogenicity—and a 
new paradigm of toxicity effects may emerge 
(Boekelheide and Campion 2010). Regulators 
and public health authorities may have to 
expand or reconsider their approaches based 
on the results from such assays.

How the Salmonella Assay 
Has Been Used
Published data. We searched three publica-
tion databases [PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/), Scopus (http://
www. scopus. com/home.url), and Web of 
Knowledge (http://apps.isiknowledge.com/)], 
and we found 10,169 unique publications 
dealing with the Salmonella assay. This was 
accomplished by searching each database for 
“Ames test OR Salmonella mutagen.” This 
gave 11,064 responses in PubMed, 13,694 in 
Scopus, and 3,453 in the Web of Knowledge. 
Although it is likely that not all references 
were found in this search, the number of refer-
ences retrieved should give a good sampling 
of trends. We merged the citations into an 
EndNote (Thomson Reuters, New York, NY) 
database, and we deleted duplicates based on 
the same first author name, journal name, 
journal year, volume, and page number. We 
examined the remaining information indi-
vidually to eliminate additional duplicates, 
non-Salmonella mutagenicity papers, abstracts, 
and papers that seemed to refer to the assay 
only tangentially. Then we categorized papers 
by key words/phrases that reflected how the 
assay was used or discussed within the context 
of the paper. The final database had 10,169 
publications sorted into 7 major categories 
and 20 subcategories. A publication was 
often included in more than one category/ 
subcategory based on the nature of that pub-
lication. The reference database is available 
in Supplemental Material (doi:10.1289/
ehp.1002336).

Figure 1A shows the numbers of publica-
tions per year that have used the Salmonella 
assay as well as the other gene-mutation 
assays developed near the same time, includ-
ing those in mammalian cells. The number 
of publications using the Salmonella assay 
rose dramatically, peaking at approximately 
500 papers/year in the early 1980s, but has 
declined gradually to a rather constant level of 
approximately 200 papers/year during the past 
decade. Other assays rose to approximately 
10–20 papers/year, with the mouse lymphoma 
Tk+/– assay remaining at that level today.

Subsequently, newer genotoxicity assays 
became popular, and the number of publications 

for these are shown in Figure 1B. By far, the 
comet assay has the highest surge in usage and 
is just now starting to plateau. The micronu-
cleus assays also are prominent, with approxi-
mately 100 papers/year being published 
consistently for the past 20 years. The publica-
tion frequency for papers using micro nucleus 
assays has surpassed those using in vitro chro-
mosome aberration assays, which peaked in the 
mid-1980s (data not shown).

With regard to the Salmonella assay, the 
papers documenting the testing of agents 
associated with environmental samples 
(Figure 1C), as well as commerce, metabo lism, 
or personal exposure (Figure 1D), peaked in 
the 1980s but still continue at a steady rate. A 
closer look at the number of papers published 
on various types of environmental samples 
(Figure 1C) shows that a) relatively few publi-
cations have been associated with soil and sedi-
ment samples; b) papers looking at air samples 
follow the overall declining trend seen since 
1983; and c) publications dealing with water 
reached a plateau starting in 1980 and have 
remained stable. However, reports dealing 
with natural substances have increased since 
the mid-1990s. This increase is due largely to a 
search for and analysis of anti mutagens, mainly 
from plant extracts. Figure 1D shows a decline 
in the number of publications on mechanism 
and metabolism; although there was a rise in 
the personal-exposures subcategories until 

the late 1980s (Figure 1D), the number has 
since declined. 

Unpublished data. For a variety of reasons, 
little toxicological data have either been gener-
ated or are available publically for a large pro-
portion of compounds in commercial use. For 
example, toxicological data are available for 
only 7% of high-production-volume chemicals 
(> 1 million pounds/year) (Guth et al. 2007) 
and for only a fraction of regulated industrial 
chemicals (Schwarzman and Wilson 2009; 
Wilson and Schwarzman 2009). The few pub-
lications dealing with commercial substances 
(Figure 1D) likely reflect the fact that such 
data are proprietary. In the U.S. EPA New 
Chemicals Program, approximately 50,000 
premanufacturing notice (PMN) cases have 
been received since 1979 when the program 
began; however, only 10% (4,997) have 
mutagenicity data, with 87% of these (4,351) 
having Salmonella assay data (Cimino MC, 
personal communication). Thus, only 8.7% of 
the 50,000 PMNs submitted during the past 
30 years have Salmonella mutagenicity data, 
almost none of which are available publically, 
and approximately 2% of pre-1979 PMNs 
have been reviewed for the need for toxicologi-
cal data (Guth et al. 2007).

To estimate the percentage of commer-
cial chemicals that are mutagens, Zeiger 
and Margolin (2000) assembled randomly 
100 chemicals in commercial use, which 

Figure 1. Peer-reviewed journal articles published per year for genetic toxicology bioassays. 
(A) Publications for the classical gene mutation assays [Salmonella assay, E. coli mutagenicity assays 
(E. coli WP2), Hprt assays in V79 and CHO cells or HPRT in TK6 cells (HPRT), and the mouse lymphoma 
Tk+/– assay. (B ) Publications for all micro nucleus (MN) assays, bone-marrow MN, and comet assays. 
(C) Publications for the Salmonella assay involving environmental substances (air, water, natural products, 
soil, and sediments). (D) Publications for the Salmonella assay involving various categories of studies  
(mechanisms and metabolism, environmental samples, personal exposure studies, commerce, and 
chemis try). The reference database is available in Supplemental Material (doi:10.1289/ehp.1002336). 
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included 46 organics in highest production 
in the United States (inorganic and elemen-
tal compounds were not included among the 
100 chemicals), and evaluated them for muta-
genicity in the Salmonella assay. They found 
that 22% of the total 100 compounds were 
mutagenic, and 20% of the subset of 46 high-
production compounds were mutagenic. In the 
absence of required testing and reporting (Guth 
et al. 2007; Schwarzman and Wilson 2009), 
these data are the best estimates available 
regarding the proportions of mutagens among 
organic compounds in current commercial use. 
Improved estimates may emerge after potential 
changes to the Toxic Substances Control Act 
(TSCA) (Birnbaum 2010; U.S. EPA 2010b; 
Wilson and Schwarzman 2009). 

The U.S. Food and Drug Administration 
(FDA) Center for Drug Evaluation and 
Research (CDER) program does not keep 
cumulative data for each assay submitted, 
largely because each submission is usually 
considered solely on the basis of the informa-
tion within it (Benz RD, personal commu-
nication). It must be assumed, however, that 
the pharmaceutical industry also has tested 
thousands of substances in the Salmonella 
assay. In an analysis using the Physicians’ Desk 
Reference from 1999 through 2008, Snyder 
(2009) compiled the mutagenicity of > 500 
marketed drugs, excluding the cytotoxic anti-
cancer and anti virals, nucleo sides, steroids, 
and biologicals. He found that approximately 
7% (38/525) of these drugs were mutagenic 
in bacterial assays (data from either E. coli or 
Salmonella assays); this small percentage is 
likely due to the extensive early screening in 
the Salmonella assay to eliminate mutagenic 
molecules from further development.

There are a few reports of environmental 
monitoring programs using the Salmonella 
assay, such as the 20-year program on surface-
water mutagenicity in Brazil (Umbuzeiro et al. 
2001). However, such monitoring is rarely 
done and almost never reported in the peer-
reviewed literature, although the Brazilian 
data are available online from the Companhia 
Ambiental do Estado de São Paulo (CETESB) 
(2010). Therefore, the large number of agents 
whose test results in the Salmonella assay have 
been published may not reflect either the 
equally large—or larger—number of propri-
etary chemicals tested by the pharmaceuti-
cal and chemical industries or environmental 
monitoring data, which are not published.

The Salmonella Assay as 
a Model for 21st Century 
Toxicology Assays
Because of its simplicity, cost effectiveness, 
flexibility, and large validated database, the 
Salmonella assay is an ideal model to con-
sider in the development of equally reliable 
in vitro toxicology assays for the 21st century. 

The predictivity, specificity, and sensitivity 
of the Salmonella assay have been validated 
against selected other mutagenicity assays and 
rodent carcinogenicity data (Tennant et al. 
1987). Likewise, new HTS assays will need 
to be validated against something (Hartung 
2009a), and one possibility is to measure 
some end points against the Salmonella assay 
(Schoonen et al. 2009). As outlined by Zeiger 
(2003), there are fundamental procedures to 
consider when developing, validating, and 
ultimately accepting new assays, and below we 
highlight some ways in which the Salmonella 
assay serves as a model for this process.

Standard procedures, quality assurance, 
and statistical assessment. Soon after the intro-
duction and widespread use of the Salmonella 
assay, researchers recognized the need for 
standardized procedures. Consequently, Ames 
published methods papers (Ames et al. 1975; 
Maron and Ames 1983), and the procedures 
were quickly adopted by the mutagenesis 
community. Procedures included the use of 
positive and negative controls, standard proce-
dures for performing the assay, preparation of 
S9 mix, checking the tester strains for genetic 
and physiological stability, and evaluating 
the results statistically (Bernstein et al. 1982; 
Claxton et al. 1984, 1987; Kim and Margolin 
1999; Margolin et al. 1981; McCann et al. 
1984; Stead et al. 1981). Although positive 
controls and metabo lic activation were gener-
ally missing from some first-generation HTS 
assays, these and other issues are being con-
sidered and corrected in current and future 
iterations of the ToxCast and Tox21 assays 
(Hartung 2009a, 2009b; Huang et al. 2009; 
Kavlock et al. 2008; Westerink et al. 2010), 
as well as for toxico genomic assays (Ellinger-
Ziegelbauer et al. 2009). As noted above, even 
the early versions of the Salmonella assay did 
not incorporate metabo lic activation (because 
it had not yet been developed). Despite these 
limitations, initial analyses of data from 
ToxCast Phase 1 have identified those chem-
icals able to induce oxidative stress as evi-
denced by Nrf2 activity (Martin et al. 2010).

Structure–activity analysis (SAR). Data 
from the Salmonella assay were used by Ashby 
(1985) to identify structural alerts for poten-
tial carcinogenicity, providing critical data for 
the develop ment of computerized structure–
activity methods for carcinogenicity predic-
tion (Richard 1998). These methods are still 
used widely within the chemical, pharmaceuti-
cal, and regulatory communities (Benfenati 
et al. 2009). Claxton et al. (1988) examined 
Salmonella assay data in the peer-reviewed 
litera ture for individual chemicals, classified 
the chemicals by an International Union of 
Pure and Applied Chemistry chemical class 
scheme, and found that mutagenicity in the 
Salmonella assay was highly predictive of 
rodent carcinogenicity for some chemical 

classes, such as aromatic amines, polycyclic aro-
matic hydrocarbons, and nitro arenes, but was 
less predictive for others, such as chlorinated 
organics. Ashby and Tennant (1988) noted 
that for 222 chemicals evaluated by the NTP, 
data from the Salmonella assay, combined with 
structural alerts and a more limited protocol 
for the rodent cancer bio assay, permitted the 
detection of trans-species/multiple-site rodent 
carcinogens, which are likely human carcino-
gens (Ashby and Paton 1993; Tennant 1993).

Building on this past success, current 
efforts still rely on Salmonella assay data and 
are extending the analyses using newly devel-
oped computational methods and structural 
features. For example, Hansen et al. (2009) 
assembled a benchmark data base containing 
6,500 chemicals with Salmonella assay data 
along with structural information [Simplified 
Molecular Input Line Entry Specifications 
(SMILES)] to develop a prediction model that 
out performs a variety of commercial predictive 
tools. Yang et al. (2008) compiled a group of 
2,428 compounds, each of which has structural 
information and data for six mutagenicity tests, 
and showed that the percentage of industrial 
chemicals that were mutagenic was greater than 
that of chemicals used as drugs or food ingredi-
ents. The incorporation of chemical structure 
into the DSSTox EPA ToxCast continues to 
grow (Houck et al. 2008), and this structural 
and toxicology data base will enable data from 
HTS assays to be used for SAR as Salmonella 
assay data have been used for decades.

Reproducibility and transferability of the 
assay across laboratories. High reproducibil-
ity of an assay allows results to be compared 
not only within the same laboratory over time 
but also among laboratories. To address this 
issue, a set of international, collaborative test-
ing programs was established to evaluate the 
Salmonella assay as well as several other muta-
genicity assays using coded chemicals from the 
same lot (Ashby et al. 1985, 1988; de Serres 
et al. 1981) and standard protocols (Dunkel 
et al. 1984, 1985; Margolin et al. 1984; 
Piegorsch and Zeiger 1991). These compara-
tive studies paved the way for the establish-
ment of standard methods and procedures 
for selected mutagenicity assays that are still 
largely in place. A similar international effort 
was established for the evaluation of standards 
of complex mixtures in the Salmonella assay 
(Claxton et al. 1992; Lewtas et al. 1992).

Concurrently, the establishment of the 
U.S. EPA GENE-TOX program (Ray et al. 
1987; Waters and Auletta 1981) provided, 
to our knowledge, the first self-assessment of 
the literature in any field of toxicology—in 
this case, genetic toxicology. This enormous 
effort (Waters 1994) involved 196 scientists 
who critically read all of the papers published 
on each of 23 assays, resulting in 41 compre-
hensive, published reviews. The consequence 
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of this effort was that out of nearly 200 assays, 
the mutagenesis community agreed on the 
general use of a subset for routine use, includ-
ing, for example, the protocols, publication 
requirements, and use of positive and negative 
controls, much of which is reflected in the 
current genotoxicity test battery (Eastmond 
et al. 2009).

As a plethora of new assays emerge over 
the coming years, a similar self-assessment 
being organized by the Transatlantic Think 
Tank of Toxicology (Hartung 2009a) will be 
invaluable. Just as with the self-assessment by 
the GENE-TOX program, it will likely result 
in the acceptance of just a few assays, as well as 
the establishment of the standards, protocols, 
interpretation, and publication requirements 
for those assays, which will provide a test bat-
tery that will serve the regulatory community 
well in the coming years.

Testing. As reviewed by Zeiger (2004), 
many factors led to the initial effort of the U.S. 
government, in particular, M. Legator at the 
FDA, to sponsor mutagenicity testing in 1971, 
followed by numerous contracts in the ensu-
ing years. Ames himself published an exten-
sive testing and validation study early on in 
which he used his assay to assess the mutagen-
icity of 300 compounds (McCann et al. 1975; 
McCann and Ames 1976). This effort was fol-
lowed soon by other screening studies involv-
ing the Salmonella and other assays (Bruce 
and Heddle 1979; Ishidate and Odashima 
1977; Nagao et al. 1978; Purchase et al. 1978; 
Rinkus and Legator 1979). The NIEHS/
NTP mounted the most comprehensive effort 
in testing, involving the comparison of four 
mutagenicity assays along with rodent carcino-
genicity data (Tennant et al. 1987). This effort 
and subsequent analyses (Kirkland et al. 2005; 
Zeiger 1998) have shown that the Salmonella 
assay alone, in the absence of a test battery, is 
reasonably predictive of rodent carcinogenicity. 
Among a group of chemicals of mixed chemi-
cal class, a greater percentage of the compounds 
that are mutagenic in the Salmonella assay are 
likely to be rodent carcinogens compared with 
the percentage of non mutagens likely to be 
non carcinogens (Kirkland et al. 2005; Zeiger 
1998). At present, there are no reliable meth-
ods to assess Salmonella-negative compounds 
for potential carcinogenicity. This conclusion 
has prompted discussion, pro and con, regard-
ing the option of eliminating the mammalian 
cell assays from the genotoxicity test battery 
or the inclusion of other assays (Elespuru et al. 
2009; Kirkland et al. 2007).

This development is ironic, as efforts pro-
ceed swiftly to develop high-throughput assays 
in mammalian cells (Kavlock et al. 2008; 
Westerink et al. 2010). Despite the theoreti-
cal and scientific relevance of mammalian cell 
assays, their prognostic value may, in fact, be 
limited. For example, the Salmonella assay is 

less susceptible than mammalian cell assays to 
artifacts resulting from high toxicity, pH shifts, 
and osmotic effects (Kirkland et al. 2007). 
Nonetheless, Zhu et al. (2008) showed that 
using HTS cell viability data for 1,408 com-
pounds greatly improved quantitative struc-
ture–activity relationship (QSAR) predictions 
for rodent carcinogenicity. They suggest that 
an approach using improved models, coupled 
with HTS assay data and structural features of 
the compounds, might partially replace in vivo 
toxicity testing. Even some in vivo assays may 
be of little or no added value, as indicated 
by the inability of the mouse bone-marrow 
micronucleus assay to improve carcinogen pre-
diction beyond that of the Salmonella assay 
alone (Zeiger 1998).

The history of genetic toxicology demon-
strates that only assays that can be adopted 
by many laboratories and validated through 
extensive testing are of value for regulatory 
purposes. Consequently, based on the testing 
efforts described above, testing schemes were 
put into law for testing new chemicals (U.S. 
EPA 2010b), pesticides (U.S. EPA 2010a), 
and new pharmaceuticals (FDA 2010). Recent 
discussions have explored how new types of 
assay data might have an impact on the reg-
ulation of geno toxic compounds (Elespuru 
et al. 2009; Ge et al. 2007; Guyton et al. 2009; 
Hartung 2009a, 2009b; Hartung and Daston 
2009; Hartung and Rovida 2009; Hoppin and 
Clapp 2005; Krewski et al. 2009; Meek and 
Doull 2009; National Research Council 2007; 
Service 2009). Many such issues will need to 
be settled before legislation of the type above 
could ever be instituted for 21st century assays.

Assay flexibility. The flexibility of the 
Salmonella assay has allowed the assay to be 
used in a variety of protocols with a variety of 
agents, including complex mixtures, gases, and 
radiation. Current HTS assays use non volatile, 
single agents that are soluble in dimethyl sul-
foxide, but agents with other characteristics 
(e.g., water-soluble compounds, gases) will 
need to be tested (Kavlock et al. 2008; 
Tice RR, personal communication). Over the 
years, this recognition for the Salmonella assay 
resulted in a plethora of modifications that 
have enabled the assay to be used in an almost 
infinite variety of ways. These include modifi-
cations permitting a) the use of small amounts 
of sample (Diehl et al. 2000; Flamand et al. 
2001; Green et al. 1977; Houk et al. 1989; 
Kado et al. 1983) in semi–high-throughput 
modes involving colorimetric analysis (Kamber 
et al. 2009; Umbuzeiro et al. 2010) and fluo-
rescent assays (Aubrecht et al. 2007; Cariello 
et al. 1998); b) the testing of volatiles and 
gases (Baden et al. 1976; Hughes et al. 1987); 
c) the testing of body fluids, including urine 
(Cerná and Pastorková 2002), feces (de Kok 
and van Maanen 2000), breast milk (Phillips 
et al. 2002; Thompson et al. 2002), breast 

nipple aspirates (Klein et al. 2001), and cervi-
cal mucus (Holly et al. 1993); d ) the testing 
of all types of complex mixtures, including 
air, soil, water, house dust, and combustion 
emissions (see “Paradigm Shift II” above), and 
fried meat (Knize and Felton 2005); e) molecu-
lar (DeMarini 2000; Koch et al. 1994) and 
genomic analyses (Porwollik et al. 2001; Ward 
et al. 2010); and f ) the evaluation of muta-
genicity inside the International Space Station 
(Rabbow et al. 2003). This flexibility has per-
mitted the Salmonella assay to be used for 
almost every conceivable type of environmental 
and molecular epidemiology study.

In addition, numerous modifications of 
the tester strains or testing conditions have 
permitted researchers to explore the role of 
metabolism and to detect the mutagenicity of 
specific chemical classes of substances (Claxton 
and Barnes 1981; Gee et al. 1994; Hagiwara 
et al. 1993; Hayashida et al. 1976; Houk and 
Claxton 1986; Houk et al. 1989; Josephy 
2002; Prival and Mitchell 1982; Reid et al. 
1984; Rosenkranz and Mermelstein 1983; 
Watanabe et al. 1990). Whether it has been 
in the development of commercial products 
(Zeiger and Margolin 2000), the evaluation of 
industrial products and wastes (Aguayo et al. 
2004; Bessi et al. 1992; Brooks et al. 1998; 
Claxton et al. 1998; Ohe et al. 2004), or sub-
stances known to contaminate the environ-
ment (Chen and White 2004; Claxton et al. 
2004; Claxton and Woodall 2007; White and 
Claxton 2004), the Salmonella assay has been 
the screening test of choice in genetic toxicol-
ogy for nearly four decades. Perhaps a new 
assay will emerge in the coming years that can 
assess a comprehensive set of predictive biologi-
cal changes and also have the range of flexibility 
exhibited by the Salmonella assay.

Standardization of sample preparation.  
The flexibility of the Salmonella assay 
prompted the development of methods to 
prepare environmental samples for the assay 
(Hewitt and Marvin 2005; Marvin and Hewitt 
2007). This included solvents and materials for 
the delivery of substances to the assay, prepa-
ration of environmental and epidemiological 
samples, and methods for the concentration 
and determination of doses for testing gases. 
The coupling of chemical methods with the 
Salmonella assay enabled extensive use of the 
assay for bioassay-directed chemical fraction-
ation to identify chemical classes of mutagens 
or individual mutagens (Austin et al. 1985; 
Brooks et al. 1998; Lewtas 1993; Lewtas 
et al. 1990; Oliveira et al. 2006), permitting 
the discovery of many environ mental muta-
gens, such as PBTA (2-phenyl benzotriazole) 
in surface waters (Nukaya et al. 1997), MX 
(3-chloro-4-(dichloromethyl)-5-hydroxy-2-
(5H)-furanone) in drinking water (Hemming 
et al. 1986), and PhIP (2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine) in fried meat 
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(Felton et al. 1986). The Tox21 program is 
already testing herbal agents and has plans 
to test complex mixtures and environmental 
samples (Tice RR, personal communication). 
Coupled with bioassay-directed fractionation, 
this effort could provide new opportunities for 
identifying environmental hazards and char-
acterizing health effects from environmental 
pollution.

Conclusions
If the Salmonella assay can be likened to the 
stethoscope, then ample studies have con-
firmed repeatedly the invaluable role that the 
Salmonella assay alone plays in identifying 
rodent (Kirkland et al. 2005; Yang et al. 2008; 
Zeiger 1998) and human (Morita et al. 1997) 
carcinogens. A physician may not make a final 
diagnosis based solely on the sounds heard 
through the stethoscope, but in many cases, 
such sounds prove to be invaluable in formu-
lating the confirmatory procedures. Perhaps 
some of the emerging HTS (Kavlock et al. 
2008), toxicogenomic (Ellinger-Ziegelbauer 
et al. 2009), and short-term rodent assays 
(Jacobson-Kram 2010) can be likened to the 
cardiology methods that would be used to fol-
low up anomalies detected by the stethoscope 
of genetic toxicology, i.e., the Salmonella assay.

Because of its historical database, intrinsic 
value, flexibility, and low cost, the Salmonella 
assay will not soon be replaced for the hazard 
identification of new chemicals or environmen-
tal samples. Indeed, chemicals whose annual 
production exceeds 1 ton/year (~ 30,000 
compounds) are scheduled to be tested in the 
Salmonella assay under the European Union’s 
Registration, Evaluation, Authorization, and 
Restriction of Chemicals (REACH) legisla-
tion (Poth and Jaeger 2007). Experience with 
the Salmonella assay should serve as a model 
for the develop ment and deployment of new 
approaches to predict and understand the toxi-
cology of substances. The use of the Salmonella 
assay may not be as lasting as that of the stetho-
scope, but the Salmonella assay has made a sig-
nificant mark on the history of toxicology and 
has an indispensable role to play in the foresee-
able future of 21st century toxicology.
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